

USO DE CALDAS ORGÂNICAS NO CONTROLE DE PRAGAS E DOENÇAS EM PRODUÇÕES AGRÍCOLAS – FASE V

¹Kétlyn Victoria Turetta, ²Dionéia Schauren.

¹Discente do Ensino Médio do Colégio Estadual Jardim Porto Alegre - Clube de Ciências. ²Docente do Clube de Ciências do Colégio Estadual Jardim Porto Alegre.

Objetivo:

O objetivo deste projeto é desenvolver diferentes caldas orgânicas para controlar o pulgão e a antracnose em plantas de quiabo, avaliar o desenvolvimento das plantas com as aplicações das caldas, observar a influências das caldas sob o pH do solo, sob a germinação de sementes de quiabo e além disso controlar *in vitro* o patógeno causador da antracnose *Colletotrichum gloeosporioides* (Penz.). Desta forma, estas diferentes caldas orgânicas podem ser consideradas um possível substituinte dos agroquímicos utilizados com as mesmas finalidades.

Metodologia:

Preparo das caldas orgânicas:

Foi feita a mistura de todos os componentes das caldas, onde eles foram pesados nas diferentes concentrações, armazenadas com um litro de água em garrafas PET e deixadas em um local sem incidência de luz por sete dias. Com as caldas preparadas elas foram aplicadas nas quatro metodologias do projeto.

Tabela 1: Composição das caldas orgânicas.

Tabela 1: Composição das caldas organicas.					
Tratamento	Uva-do-Japão	Alamanda	Urina de vaca	Alho	Enxofre
T1	0 gL ⁻¹	0 gL ⁻¹	0 %	0 gL ⁻¹	0 gL ⁻¹
T2	50 gL ⁻¹	0 gL ⁻¹	0 %	0 gL ⁻¹	0 gL ⁻¹
Т3	25 gL ⁻¹	25 gL ⁻¹	0 %	0 gL ⁻¹	0 gL ⁻¹
T4	50 gL ⁻¹	0 gL ⁻¹	5 %	0 gL ⁻¹	0 gL ⁻¹
T5	25 gL ⁻¹	25 gL ⁻¹	5 %	0 gL ⁻¹	0 gL ⁻¹
T6	25 gL ⁻¹	25 gL ⁻¹	5 %	0 gL ⁻¹	200 gL ⁻¹
T7	50 gL ⁻¹	0 gL ⁻¹	0 %	10 gL ⁻¹	0 gL ⁻¹
T8	25 gL ⁻¹	25 gL ⁻¹	0 %	10 gL ⁻¹	0 gL ⁻¹
Т9	0 gL ⁻¹	50 gL ⁻¹	0 %	10 gL ⁻¹	0 gL ⁻¹
T10	25 gL ⁻¹	25 gL ⁻¹	5 %	10 gL ⁻¹	0 gL ⁻¹
T11	25 gL ⁻¹	25 gL ⁻¹	5 %	10 gL ⁻¹	200 gL ⁻¹
T12	50 gL ⁻¹	0 gL ⁻¹	5 %	10 gL ⁻¹	0 gL ⁻¹
T13	50 gL ⁻¹	0 gL ⁻¹	5 %	10 gL ⁻¹	200 gL ⁻¹

Fonte: Kétlyn Victoria Turetta.

Campo:

Inicialmente foi realizada a limpeza e o preparo do solo. Sementes de quiabo foram plantadas. Após três semanas do plantio deram-se início as aplicações, elas foram realizadas semanalmente com o auxílio de um borrifador de pressão durante todo o ciclo de produção da planta. Após o desenvolvimento dos frutos, os mesmos foram colhidos e levados ao laboratório do colégio, para realizar as análises, onde os frutos foram pesados e medidos, os dados obtidos foram submetidos ao teste de Scott-Knott a 5% de significância.

Fluxograma 1: Metodologia Campo.

FIGURA 1: Caldas utilizadas; FONTE: Rafaela Furlanetto./ FIGURA 2: Aplicação das caldas orgânicas; FONTE: Rafaela Furlanetto/ FIGURA 3: Análise dos quiabos; FONTE: Gabrieli Campos.

pH do solo:

Foram organizados vasos de planta com terra e o pH ajustado, As caldas foram preparadas e aplicadas semanalmente nos vasos de cada tratamento e o pH do solo é avaliado. Esse processo foi realizado semanalmente durante dois meses.

Germinação das sementes:

As sementes foram organizadas em placas de petri, as caldas aplicadas sobre as sementes, as placas foram embaladas e deixadas em um fotoperíodo de 12h. Foi observado diariamente o índice de germinação e após a germinação total das sementes, as plântulas foram analisadas e os dados obtidos submetidos ao teste de Scott-Knott a 5% de significância.

Fluxograma 2: Metodologia da germinação de sementes.

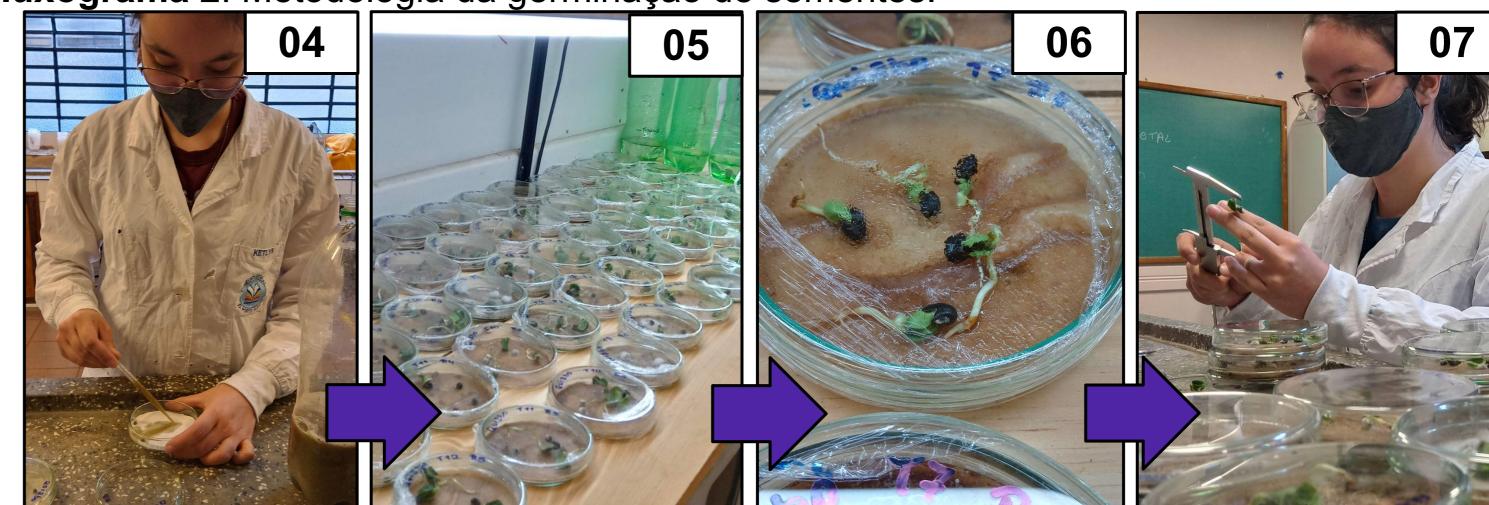
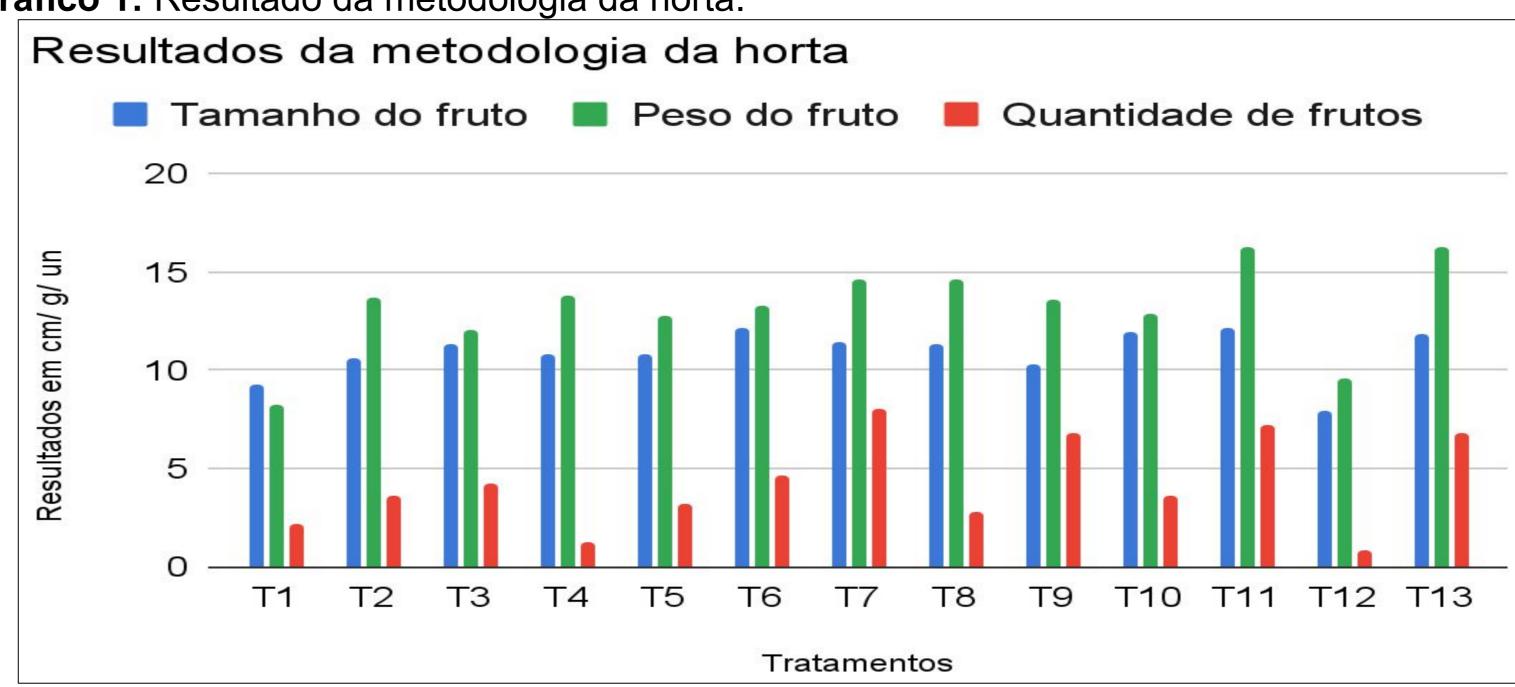



FIGURA 4: Aplicação das caldas; FONTE: Rafaela Furlanetto/ FIGURA 5: Organização das placas; FONTE: Kétlyn Turetta/ FIGURA 6: Germinação das sementes; FONTE: Kétlyn Turetta/ FIGURA 7: Avaliação das plântulas; FONTE: Gabrieli Campos.

Resultados e discussões:

As diferentes caldas orgânicas se mostraram eficazes para o melhor desenvolvimento das plantas. Os tratamentos que se mostraram superiores ao controle para o tamanho e peso do fruto foram o T2, T3, T4, T5, T6, T7, T8, T9, T10, T11 e T13, já para a quantidade de frutos o T7, T9, T11 e T13 se mostraram superiores aos demais tratamentos, incluindo o controle. Além disso apresentaram ação repelente do pulgão e o controle total da antracnose.

Gráfico 1: Resultado da metodologia da horta.

Fonte: Kétlyn Victoria Turetta.

As diferentes caldas orgânicas se mostraram eficazes para o melhor desenvolvimento das plantas durante a germinação. Os tratamentos que se mostraram superiores ao controle para o tamanho da planta e da raiz foi o T6, já para o número de raízes foram o T6 e T9.

Além disso as diferentes caldas orgânicas não apresentaram diferença no pH do solo, assim mantendo o pH adequado para o desenvolvimento das plantas de quiabo.

Resultados encontrados neste estudo corroboram com os de Verdi et. al. (2017), que utilizou diferentes caldas orgânicas no controle de Aphis gossypii e da antracnose em plantas de pepino, obtendo melhor resultado no tratamento contendo alho, urina de vaca e folhas de Uva-do-Japão. Schorr et. al. (2017) constatou que as concentrações 7% e 8% de urina de vaca nas vias de aplicação solo e foliar se mostraram estatisticamente superiores aos demais tratamentos para o peso das folhas na cultura de couve folha, mostrando-se um repelente de pulgão em todos os tratamentos, repelindo 100% dos insetos.

Conclusões:

Foi possível observar a eficácia das caldas orgânicas no controle do pulgão e da antracnose, além do melhor desenvolvimento das plantas de quiabo, nos tratamentos T7 (Uva-do-Japão e alho), T9 (Alamanda e alho), T11 (Uva-do-Japão, Alamanda, alho, urina de vaca e enxofre) e T13 (Uva-do-Japão, urina de vaca, alho e enxofre). Já para a germinação de sementes, a calda mais eficaz para o desenvolvimento das plantas é a T6 (Uva-do-Japão, alamanda e urina de vaca). Além disso não impactaram negativamente no pH do solo. Assim, essas caldas orgânicas podem ser utilizadas pelos produtores sem causar impactos ao meio ambiente e a saúde humana.

Referências:

SCHORR, et al. Aplicação de biofertilizante a base de urina de vaca no desenvolvimento de *Brassica oleracea var. acephala* e ação repelente de *Brevicoryne brassicae* (L.). **Anais.:** In: II Congresso Brasileiro De Ciências E Tecnologias Ambientais, 2017, Toledo-PR.

VERDI, et al. Utilização de diferentes caldas orgânicas no controle alternativo da antracnose e de pulgões aliado ao aumento do peso dos frutos de *Cucumis sativus*. **Anais.:** In: II Congresso Brasileiro De Ciências E Tecnologias Ambientais, 2017, Toledo-PR.

Clube de Ciências Cientistas do Jardim Colégio Estadual Jardim Porto Alegre