NANOEMULSÕES A PARTIR DE ÓLEOS ESSENCIAIS: USO DA NANOTECNOLOGIA COMO SOLUÇÃO SUSTENTÁVEL NA AGRICULTURA

MENEGHETTI, BEATRIZ; PERINI, GABRIELA; AVELAR, PAMELA; FRANCISCO, YASMIN; FRANÇA, HILDEGARDO; INSTITUTO FEDERAL DO ESPÍRITO SANTO/CAMPUS VILA VELHA

TÉCNICO EM QUÍMICA INTEGRADO; TÉCNICO EM BIOTECNOLOGIA INTEGRADO; QUÍMICA INDUSTRIAL

beatrizpiresmeneghetti@gmail.com; gabriela.s.perini@hotmail.com; pamelaavelar28@gmail.com; yasminffrancisco@hotmail.com;

INTRODUÇÃO

As nanoemulsões possuem uma dispersão nanométrica de gotículas oleosas em uma fase aquosa externa, com uma estabilização através de tensoativos, gerando um sistema homogêneo e estável em uma escala nanométrica, com tamanhos equivalentes a 10-9.. Sendo assim, ao alterar a dimensão das partículas, altera-se também suas propriedades. De acordo com Porto (2020), enquanto as emulsões possuem tamanhos maiores que 100 nm, as nanoemulsões podem ir de 100 a 500 nm. Além da alteração das características por conta do tamanho, é possível adicionar outros elementos ao sistema, como: extratos vegetais alcoólicos, nanopartículas metálicas, óleos essenciais e outros. Mas, focaremos na estabilidade de sistemas com a adição dos óleos essenciais: Cymbopogon winterianus (Citronela), Mentha Piperita (Hortelã-Pimenta) e Cymbopogon flexuosus (Lemongrass).

OBJETIVOS

O objetivo do trabalho pautou-se em encontrar formulações protótipos de sistema nanoemulsionante de origem natural para ser utilizado como bioherbicida e antifúngicas derivados vegetais de Cymbopogon flexuosus (Lemongrass), Mentha piperita (Hortelã-pimenta), e Cymbopogon winterianus (Citronela) estáveis com técnicas de baixo aporte de energia como alternativa sustentável na agricultura.

MÉTODOS

Preparação de Nanoemulsão

Seleção das mais estáveis

Testes de estabilidade

Testes microbianos Análise de DLS

INSTRUMENTOS UTILIZADOS NA METODOLOGIA

RESULTADOS

A definição de uma nanoemulsão mais estável se dá pela observação física do chamado Efeito Tyndall, que se trata da dispersão e reflexão da luz com rastro visível provocadas por partículas coloidais, de dimensões de 1 a 1000 nm (TANAKA DOS SANTOS).

Quanto aos resultados de pH, em termos gerais, observou-se resultados na faixa entre 3,60 e 5,97, sendo todas as nanoemulsões, mesmo postas à variadas condições, levemente ácidas.

RESULTADOS MICROBIOLÓGICOS PARA Cymbopongon flexuosus DILUÍDO 1%

Staphylococcus aureus **MRSA ATCC BA01 Escherichia coli**

produtora de ESBL **Escherichia coli** produtora de KPC - 2

Escherichia coli

produtora de de IMP -1

MIC: 625 ug/mL CBM: 1.250 ug/mL MIC: 1.250 ug/mL CBM: 1.250 ug/mL

MIC: 5.000 ug/mL

CBM: 5.000 ug/mL MIC: 2.500 ug/mL CBM: 2.500 ug/mL

Escherichia coli produtora de mcr - 3 **Escherichia coli**

MIC: 1.250 ug/mL CBM: 1.250 ug/mL MIC: 5.000 ug/mL CBM: 5.000 ug/mL produtora de mcr - 4 Klebsiella pneumoniae MIC: 5.000 ug/mL produtora de KPC e NDM CBM: 5.000 ug/mL

RESULTADOS MICROBIOLÓGICOS DAS NANOEMULSÕES MAIS ESTÁVEIS

Mentha piperita	Cymbopogon flexuosus	Cymbopogon winterianus	Notas		
X	E. coli ATCC	Fileira A <i>(Escherichia coli</i> ATCC): 12.500 ug/mL sem CBM I	MIC: 5.000 ug/mL CBM: não houve		
X	P. mirabilis ATCC	Fileira A (Escherichia coli ATCC): 12.500 ug/mL e Fileira D (Staphylococcus aureus ATCC): 12.500 ug/mL sem CBM II	MIC : 5.000 ug/mL CBM: 5.000 ug/mL		
X	S. aureus ATCC	X	MIC: 625 ug/mL CBM: 1.250 ug/mL		

TRANSMITÂNCIA DAS NANOEMULSÕES MAIS ESTÁVEIS (%T)

CONDIÇÕES	Mentha piperita		Cymbopogon flexuosus		Cymbopogon winterianus	
	Branco (água)	Média	Branco (água)	Média	Branco (água)	Média
Temperatura de 8°C	94,065	80,585	93,604	67,203	93,630	97,356
Temperatura de 25°C	93,453	79,112	93,624	63,614	93,867	19,555
Temperatura de 25°C (1 semana depois)	93,942	29,503	93,629	16,450	93,590	32,464
Temperatura de 80°C	93,142	0,0494	93,909	0,048	93,783	0,187
Centrífuga	93,974	78,632	93,920	65,091	93,945	16,795

ÍNDICE DE REFRAÇÃO DAS NANOEMULSÕES MAIS **ESTÁVEIS**

CONDIÇÕES	Mentha piperita		Cymbopogon flexuosus		Cymbopogon winterianus	
	Branco <i>(água)</i>	Média	Branco <i>(água)</i>	Média	Branco <i>(água)</i>	Média
Temperatura de 8°C	1,332	1,3388	1,332	1,339	1,332	1,3518
Temperatura de 25°C	1,332	1,3382	1,332	1,338	1,332	1,3385
Temperatura de 25°C (1 semana depois)	1,332	1,3387	1,332	1,339	1,332	1,349
Temperatura de 80°C	1,332	1,338	1,332	1,3383	1,332	1,3495
Centrífuga	1,332	1,338	1,332	1,3382	1,332	1,3485

ANÁLISE DO ESPALHAMENTO DINÂMICO DA LUZ COM AS NANOEMULSÕES MAIS ESTÁVEIS ANÁLISE DO ESPALHAMENTO DINÂMICO DA LUZ COM Mentha piperita SOB DIFERENTES ΤΕΜΡΕΡΑΤΙΙΡΑς ΑΡΏς 22 DIAS

	TAMANHO MÉDIO DA PARTÍCULA (nm)	ÍNDICE DE POLIDISPERSÃO	TEMPERATURAS APOS 22 DIAS				
ÓLEOS ESSENCIAIS			CONDIÇÕES	TAMANHO MÉDIO DA PARTÍCULA (nm)	ÍNDICE DE POLIDISPERSÃO		
Mentha piperita	54,68	0,1558	Temperatura de	203,8	0,05203		
Cymbopogon	77,65	0,158	80°C	203,6	0,03203		
flexuosus Cymbopogon			Temperatura ambiente	149,5	0,09582		
winterianus	146,8	0,2721	Temperatura de 7°C	127,2	0,1088		

CONCLUSÃO

Por meio da realização do teste do Espalhamento Dinâmico da Luz (DLS), primordialmente é importante atestar que todas as nanoemulsões realizadas apresentam efetivamente um caráter nanométrico. Ademais, a partir da realização dos testes de estabilidade e seus resultados, conclui-se que armazenar as nanoformulações em estado de refrigeração permite uma maior durabilidade da amostra, conservando seu tamanho nanométrico e suas características de nanoemulsão, como por exemplo, a formação do Efeito Tyndall. Apesar de ainda não ter sido possível realizar os testes herbicidas, realizamos os testes antimicrobianos e pode ser concluído que a nanoemulsão de Lemongrass apresenta atividade contra bactérias padrões e multirresistentes, e a nanoemulsão de Citronela apresenta atividade contra bactérias padrões.

REFERÊNCIAS

CAMPOS, E. V. R. et al. Use of botanical insecticides for sustainable agriculture: Future perspectives. Ecological Indicators, v. 105, p. 483-495, 1 out. 2019.

FARMACOPEIA, B. Agência Nacional de Vigilância Sanitária. 6 edição V ed. Brasilia: [s.n.]. PORTO, Alice Sperandio et al. Nanoemulsões formuladas para uso tópico: estudo de síntese e toxicidade. 2020.

TANAKA DOS SANTOS, Lucas Makoto. Efeito Tyndall. Todo Estudo. encurtador.com.br/cghxJ.