CBet: REVESTIMENTO BIOTECNOLÓGICO PARA SEMENTES A PARTIR DO APROVEITAMENTO DO COPRODUTO DE BETERRABA

Ana Rebeka Monteiro Lima de Souza¹, Heloina Lopes Capistrano², Francisco Augusto Oliveira Santos³ (1)- Estudante, (2) – Orientadora, (3) - Coorientador - EEMTI Marconi Coelho Reis - mcrprojeto@gmail.com

INTRODUÇÃO

O Brasil é um dos países que mais usa agroquímicos sintéticos para potencializar a produtividade agrícola. Nesse sentido, a biotecnologia pode ser utilizada para obtenção de alimentos mais saudáveis, sendo o uso de recobrimentos uma possibilidade de agregar compostos bioativos à semente. Dentre os materiais que são fontes de compostos bioativos estão os coprodutos da casca da beterraba (Figura 1), que correspondem a 70% dos coprodutos gerados no processamento da hortaliça.

cascas de beterraba

Figura 1: Coproduto das

Fonte: A própria autora, 2023.

PROBLEMA

Seria possível desenvolver um revestimento a partir de biocelulose e biomassa de coproduto beterraba (Beta vulgaris) capaz de potencializar o percentual germinativo e de compostos bioativos em culturas de coentro (Coriandrum sativum)?

HIPÓTESE

Delineamento

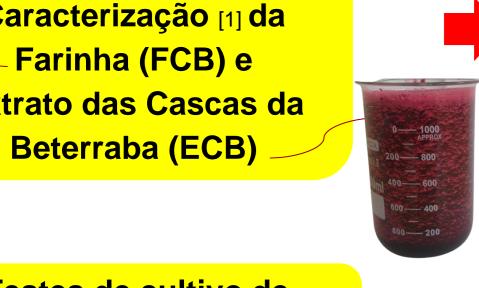
Composto Central

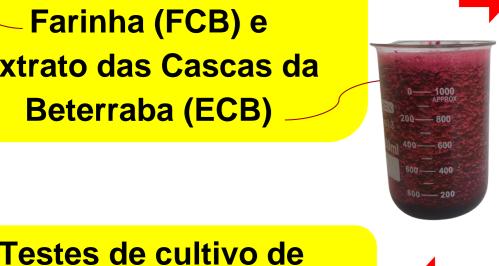
Rotacional (DCCR) 2² [2]

É possível desenvolver um revestimento à polímero obtido via rota biotecnológica e biomassa de coproduto de beterraba capaz de potencializar aspectos fisiológicos e metabólitos secundários em coentro.

METODOLOGIA

Figura 2: Fluxograma metodológico


Produção e Caracterização [1] da Farinha (FCB) e Extrato das Cascas da **Beterraba (ECB)**


coentro (Coriandrum

sativum) var Verdão

Análises

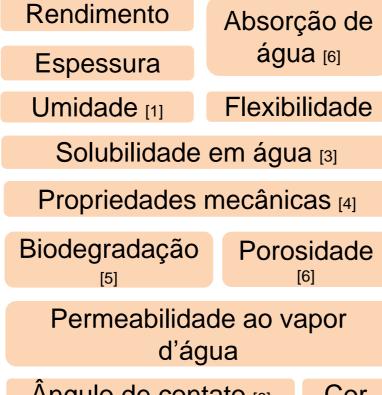
Fisiológicas

Difração de raios X, Microscopia Eletrônica de

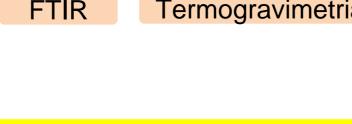
Varredura e Espectroscopia de raios X.

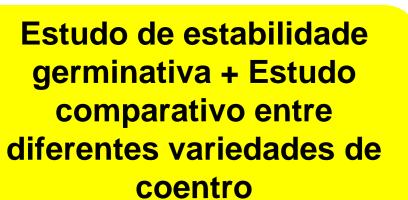
Análises

Síntese dos revestimentos (Testes prévios + DCCR 2²)



Testes prévios de


biossíntese polimérica

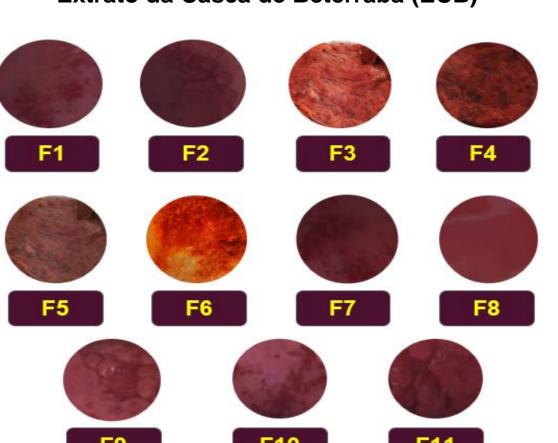

Caracterização dos biopolímeros

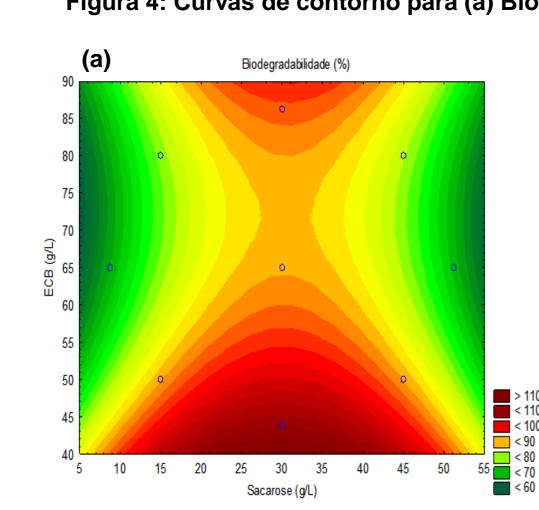
Ângulo de contato [6] Cor Termogravimetria

Testes de cultivo de Feijão e Alface + Cultivo de Coentro em Campo

Pesquisa com agricultores e consumidores

Tratamento estatístico


Fonte: A própria autora, 2024


RESULTADOS

Análise de custos [1

As Figura 3 e 4 apresentam, respectivamente, os biopolímeros obtidos a partir de ECB e as curvas de contorno para Biodegradabilidade e Absorção de água. A Tabela 01 apresenta os dados de caracterização dos polímeros (DCCR 22), onde a amostra 8 foi selecionada com a mais promissora.

Figura 3: Biopolímeros obtidos a partir do Extrato da Casca de Beterraba (ECB)

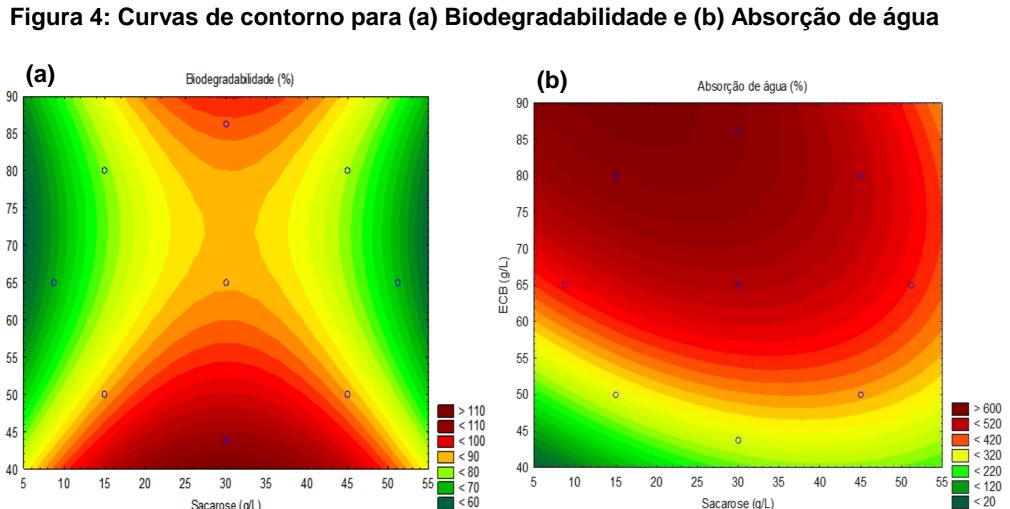
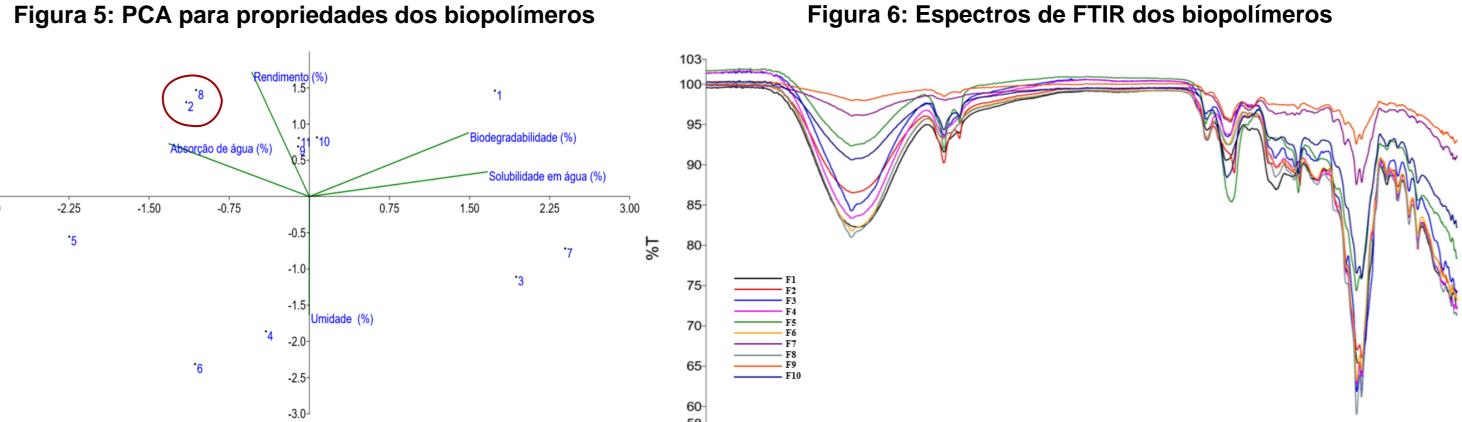


Tabela 1: Caracterização dos biopolímeros obtidos em meios contendo ECB e Sacarose

Ensaio	Rendimento (%)	Espessura (mm)	Solubilidade (%)	Biodegradação (mm)	Absorção de água (%)	Módulo de Young (MPa)
1	8,45 ± 0,11 ^a	$0,128 \pm 0,02^{a}$	$97,18 \pm 0,03^{af}$	$98,93 \pm 0,09^{a}$	$321,33 \pm 2,62^a$	$1,67 \pm 0,54^{a}$
2	$8,23 \pm 0,18^a$	$0,185 \pm 0,01^{b}$	$86,87 \pm 0,97^{b}$	$83,67 \pm 9,09^{b}$	$603,7 \pm 6,01^{b}$	$49,44 \pm 11,01^{b}$
3	$2,28 \pm 0,14^{b}$	$0,158 \pm 0,01^{c}$	$95,24 \pm 0,09^a$	$96,63 \pm 0,09^{ac}$	$313,13 \pm 3,60^a$	$93,69 \pm 60,97^{c}$
4	$2,43\pm0,05^{\mathrm{bc}}$	$\textbf{0,436} \pm \textbf{0,01}^{\text{d}}$	$83,21 \pm 0,07^{c}$	$82,67 \pm 0,09^{b}$	$442,17 \pm 29,3^{c}$	$31,12 \pm 4,83^d$
5	$5,68 \pm 0,12^{d}$	$\textbf{0,329} \pm \textbf{0,03}^{\text{e}}$	$76,44 \pm 1,66^{d}$	$60,70 \pm 6,09^{d}$	$424 \pm 2,94^{c}$	$273,3 \pm 49,53^{e}$
6	$3,24 \pm 0,10^{e}$	$0,125 \pm 0,01^a$	$88,16 \pm 0,88^{\mathrm{eb}}$	$65,33 \pm 8,09^{d}$	$517,6 \pm 4,49^{d}$	$123,4 \pm 46,52^{f}$
7	$2,81 \pm 0,09^{ce}$	$0,516 \pm 0,01^{f}$	$98,37 \pm 0,11^{f}$	$98,97 \pm 1,09^{a}$	$303,3 \pm 13,59^a$	$44,77 \pm 7,85^{g}$
8	$9,58 \pm 0,01^{f}$	$0,276 \pm 0,00^{g}$	$87,43\pm0,07^{\mathrm{eb}}$	$90,67\pm0,09^{abc}$	$642,6 \pm 3,29^{b}$	$33,22 \pm 8,89^{h}$
9	$5,79\pm0,06^{d}$	$\textbf{0,189} \pm \textbf{0,02}^{\text{h}}$	$89,48 \pm 0,59^{eg}$	$88,00\pm5,09^{\mathrm{bc}}$	$510,9 \pm 1,51$ ^d	$247\pm76,15^{i}$
10	$5,65 \pm 0,21$ ^d	$0,179 \pm 0,01^{i}$	$90,68 \pm 0,32^{g}$	$90,20\pm3,09^{abc}$	$523,33 \pm 0,94^d$	$269,61 \pm 4,71^{j}$
11	$5,69 \pm 0,06^{d}$	$0,180 \pm 0,01^{i}$	$89,62 \pm 0,48^{eg}$	90.87 ± 4.09^{abc}	$544,13 \pm 38,9^{d}$	$240,77 \pm 3,18^{k}$


Médias acompanhadas da mesma letra na coluna não diferiram significativamente pelo teste de Tukey (p<0,05).

Fonte de Imagens e Tabelas: A própria autora, 2023.

RESULTADOS

A 95% de confiança ECB (g/L) e Sacarose (g/L) foram significativas para todas as variáveis respostas testadas, indicando que alterações em suas concentrações modificarão as propriedades dos polímeros. A Análise de Componentes Principais (PCA) (Figura 5), indica que as amostras 2 e 8 apresentaram valores superiores para rendimento e absorção de água. A Figura 06 apresenta os espectros de FTIR dos biopolímeros, indicando a presença de celulose.

Figura 5: PCA para propriedades dos biopolímeros

O revestimento biotecnológico promoveu maior germinação, comprimento da raiz e altura da planta e maior teor de compostos bioativos(p<0,05) para os ensaios em laboratório (Tabela 2) com a variedade verdão, bem como no ensaio comparativo entre as variedades Verdão, Coimbra e Português e para os testes em campo.

Tabela 2: Resultados das análises fisiológicas e bioquímicas de plântulas de coentro tratadas com diferentes revestimentos

Amostra	Germinação (%)	da raiz (cm)	Altura da planta (cm)	Flavonoides (mg EQ 100g ⁻¹)	(mg GAE 100g ⁻¹)	Atividade Antioxidante - (μM trolox g ⁻¹)
CBet	$98,93 \pm 1,57^{a}$	$2,63 \pm 0,05^{a}$	$9,57 \pm 0,52^{a}$	$489,66 \pm 22,33^{a}$	$558,11 \pm 2,30^{a}$	$188,40 \pm 3,13^{a}$
C1	$84,39 \pm 7,20^{ab}$	$2,29 \pm 0,10^{b}$	$8,28 \pm 0,33^{b}$	224,21 ± 11,26 ^b	$222,15 \pm 25,8^{b}$	$82,26 \pm 11,68^{b}$
C2	$67,80 \pm 9,81^{\circ}$	$1,70 \pm 0,41^{c}$	$4,17 \pm 0,11^{c}$	$94,15 \pm 2,5b^{c}$	141,8 ± 24,1°	$60,78 \pm 0,60^{\circ}$
C3	$61,11 \pm 5,67^{d}$	$1,58 \pm 0,02^{d}$	$7,32 \pm 0,13^{d}$	$12,58 \pm 2,41^{d}$	$83,97 \pm 1,69^{d}$	55,35± 2,55 ^d
C(+)	$97,31 \pm 2,18^{e}$	$2,31 \pm 0,10^{e}$	$8,74 \pm 1,15^{e}$	$8,23 \pm 0,08^{d}$	$76,14 \pm 3,92^{e}$	$48,23 \pm 6,84^{e}$
C(-)	$76,68 \pm 8,16^{f}$	$1,51 \pm 0,03^{d}$	$7,93 \pm 0,39^{f}$	$8,23 \pm 0,08^{e}$	$76,14 \pm 3,92^{f}$	$48,23 \pm 6,84^{e}$

Médias seguidas da mesma letra na coluna não diferiram significativamente pelo teste de Tukey à 95% de confiança. Legenda: CBet - Polímero biotecnológico e Biomassa de beterraba; C1 - Amido de mandioca e biomassa de beterraba; C2 - Polímero biotecnológico; C3 – Amido de mandioca; C(+) –Polímero Sintético Disco AG Red-L230; e C(-) – Sem revestimento.

Figura 7: Dendrograma das médias das análises de compostos bioativos (a) e fisiológicas (b) da variedade Verdão

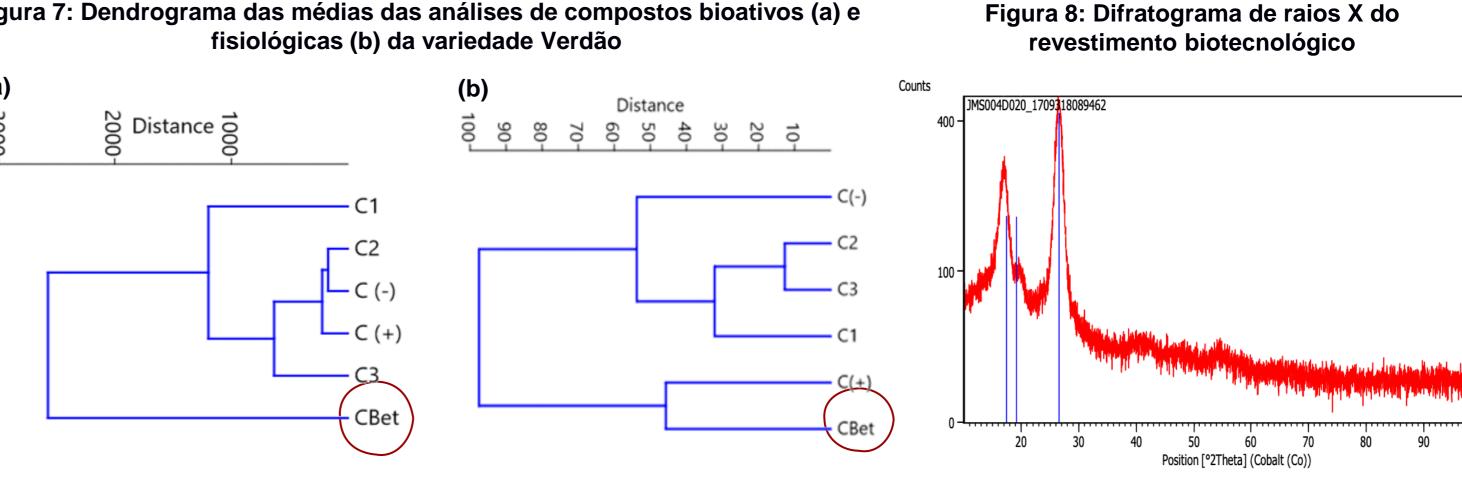
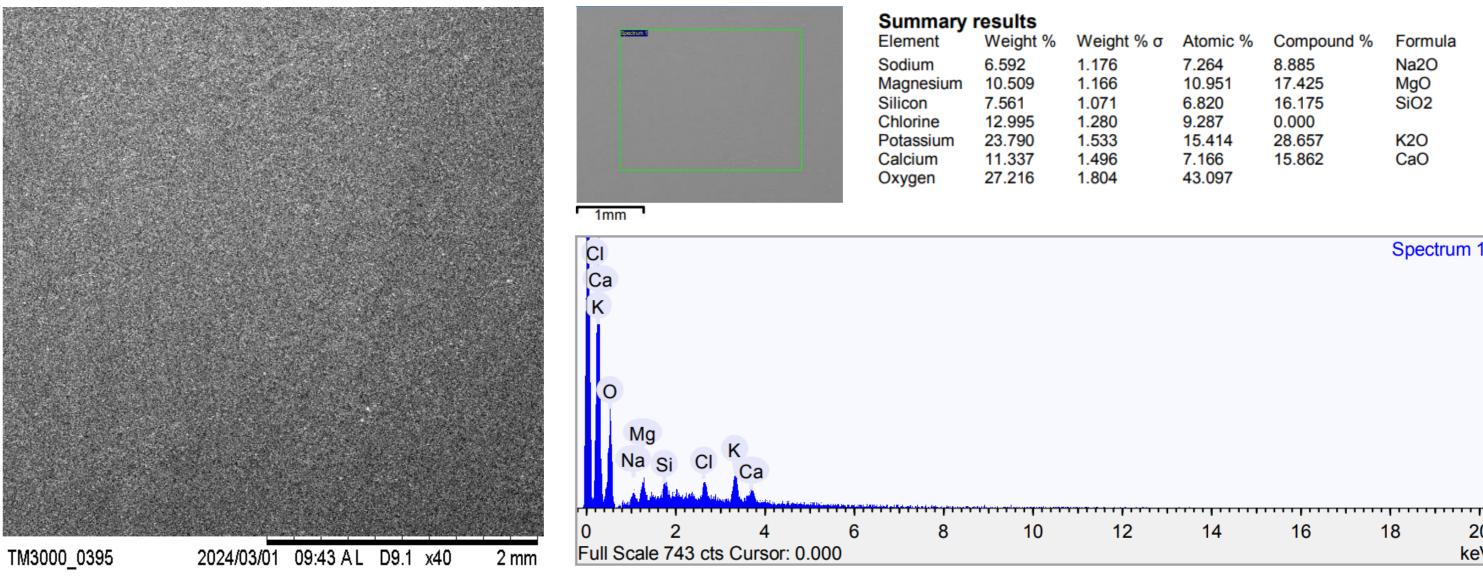



Figura 9: Microscopia Eletrônica do revestimento

Figura 10: Espectro de raios X de energia dispersiva do revestimento biotecnológico com os respectivos óxidos presentes em porcentagem

Fonte de Imagens e Tabelas: A própria autora, 2023.

O revestimento obtido a um preço de R\$0,28 (200g), é uma alternativa de baixo custo para potencializar a produtividade e saudabilidade das culturas de coentro, obtendo 95,3% de germinação em campo. Este projeto colabora com 8 dos 17 Objetivos de Desenvolvimento Sustentável (Figura 11) da Agenda 2030 da ONU.

Figura 11: Objetivos do Desenvolvimento Sustentável da Agenda 2030 da ONU contemplados pelo projeto

CONCLUSÃO

O objetivo do projeto foi alcançado com êxito, uma vez que produziram-se revestimentos sustentáveis e biodegradáveis a partir da casca da beterraba utilizando processos biotecnológicos, potencializando a germinação e o teor de bioativos no coentro. Conclui-se que o projeto apresenta relevância tecnológica, científica, social e ambiental.

REFERÊNCIAS

[1] ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS. Official methods of analysis of the AOAC. Washington DC: Association of Official Analytical Chemists, 2005. [2] NETO, B.B.; SCARMINIO, I.S.; BRUNS, R.E. Como fazer experimentos: pesquisa e desenvolvimento na ciência e na indústria. Campinas, Unicamp, 2001. 401p.

[3] GONTARD, N., et al. Edible composite films of wheat gluten and lipids: Water vapor permeability and other physical properties. International Journal of Food Science and Technology, 29(1), 39–50. 1994. [4] ASTM, 2012. Standard test method for tensile properties of thin plastic sheeting (D882-12). In: Annual Book of ASTM Standards. American Society for Testing and Materials, Philadelphia, PA. [5] MARTUCCI, J.F. Biodegradable three -layer film derived from bovine gelatin. **Journal of Food Engineering**, vol. 99, n. 9, p. 377 - 383, ago. 2010.

[6] LIN, C. W. et al. Sorption and transport properties of 2 -acrylamido - 2 -methyl - 1 -propanesulfonic acid-grafted bacterial cellulose membranes for fuel cell application. Journal of Power Sources, p. 297 - 305, [7] CHAUHAN, A. et al. Influence of gibberellic acid and different salt concentrations on germination percentage and physiological parameters of oat cultivars. Saudi Journal of Biological Sciences, v. 26, p. [8] SINGLETON, V. L. et al. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteau reagent. Methods of Enzymology, 299: 152–178, 1999.

[9] LARRAURI, J. A. et al. Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. Journal of Agricultural and Food Chemistry, London, v. 45, n. 4, p.

[10] RUFINO, M. S.; PÉREZ-JIMENEZ, J.; TABERNERO, M.; ALVES, R.E.,; BRITO, E. S.; SAURA-CALIXTO, F. Acerola and cashew apple as sources of antioxidant and dietary fibre. International Journal of Food Science and Technology, v.45, p.2227-2233, 2010. [11] MENDES, J. T. G. Economia: Fundamentos e Aplicações. 1ª Ed. São Paulo: Biblioteca Universitária Pearson, Marca Prentice Hall. 2012, 184 p.

[12] SINGH, R. L; MONDAL, S. Biotechnology for Sustainable Agriculture. 1. Ed. Sawston: Woodhead Publishing, 2018, 446 p. [13] ROCHA I. et al. Seed Coating: A Tool for Delivering Beneficial Microbes to Agricultural Crops. Frontiers in Plan Science, 2019.

1390-1393, 1997.