INTRODUÇÃO

Em geral, fungicidas sintéticos são considerados nocivos e poluentes para o meio ambiente, além de sua toxicidade aos consumidores, quando utilizado de maneira indiscriminada. Nesse sentido, os extratos vegetais são alternativas mais seguras, saudáveis e ecológicas quando comparados às moléculas sintéticos. Esses produtos naturais podem ser usados no manejo de plantas cultivadas devido à toxicidade específica para fungos filamentosos sem efeitos tóxicos proeminentes em organismos não-alvo (Onaran e Sağlam, 2016). O Brasil possui a maior diversidade de plantas do planeta, nativas de distintos biomas e passagens. No Estado do Rio Grande do Sul, são mais de 4,5 mil angiospermas são conhecidas (FIORAVANTI, 2016). Esta diversidade tem grande importância ecológica e ecossistêmica, como aproveitamento para fonte de alimentos, remédios, fibras, corantes, e outras multifuncionalidades.

PROBLEMA DE PESQUISA

O uso indiscriminado de determinados agrotóxicos afetam a saúde de todo agroecossistema(solo, água e alimentos). Quando aplicado o agrotóxico pode se deslocar pelo meio ambiente através da água e dos ventos, podendo poluir rios e plantações utilizadas para o consumo, causando diversos impactos até mesmo em organismos não-alvos

HIPÓTESES

Os extratos atuam de maneira positiva no controle de alguns fungos fitopatogênicos de interesse agrícola. Os extratos biológicos podem não ser efetivos no controle de fungos de interesse agrícola

OBJETIVO

Avaliar diferentes extratos das espécies Picrasma crenata e Araucaria angustifolia sobre desenvolvimento dos fungos Botrytis sp, Sclerotinia sclerotiorum e Colletotrichum gloeosporioidesm não ser efetivos no controle de fungos de interesse agrícola.

Orientador: Paulo H. Boff Corientador: Valdirene C. Sartori

AVALIAÇÃO DE DIFERENTES EXTRATOS DE ESPÉCIES DA FLORA NATIVA COMO POTENCIAL PARA BIOCONTROLE DE FUNGOS FITOPATOGÊNICOS DE INTERESSE AGRÍCOLA

METODOLOGIA

Os ramos de *Picrasma crenata* (pau amargo) e casca lisas e de coloração vinácea de *Araucaria angustifolia* foram coletadas em área do município de Nova Roma do Sul.

Os mesmos foram desidratados em estufa a 50 C, e após preparados a partir de quatro técnicas de extração: extração alcoólica, hidroalcoólicas, a frio, e por processo de decocção, que consistiu na sua fervura por 15 minutos, para a produção do decocto.

As proporções utilizadas foram: 20 g do material triturado para 200 mL dos diferentes extratores. As extrações alcoólicas, hidroalcoólicas e a frio permaneceram 7 dias no escuro e após acondicionadas em ambiente refrigerado. Foram avaliadas os teores individuais de compostos fenólicos (HPL), a atividade antifúngica dos diferentes extratos de *P. crenata* e *A. angustifolia* nas concentrações de zero (controle), 1 %, 2,5 %, 5 % 10 % e 20 % v/v sobre o crescimento micelial de fungos fitopatogênicos *C. gloeosporioides*, *B. cinerea e Sclerotinia sclerotiorum*. Após foram avaliados os diâmetros de crescimento micelial ao 3o, 7o e 14o dia após a inoculação e realizada análise estatística.

RESULTADOS E DISCUSSÕES

Valores mais expressivos com relação aos compostos fenólicos e flavonóides totais foram identificados a partir do extrato etanólico a 70%, seguido de 90% e da decocção.

Tabela 1. Teores de compostos fen diferentes extratos a partir de cascas lis		totais dos	diferentes
diferentes extratos a partir de cascas lis	Etanol 96 %	Etanol 70 %	Decocção
Compostos fenólicos1 (mg·100 mL·1)	3129,29	3144,08	2160,36
Flavonoides2 (mg·100 mL-1)	3905,85	4453,02	1861,82
1 - Expresso como equivalente de ácido gálico	² – Expresso como equiva	lente de guerce	tina

Dos fitocompostos identificados a partir de diferentes extratos de espécies de Araucária, como fenilpropanoides, flavonoides, compostos fenólicos, lignanas e terpenoides Abdel-Sattar et al (2009), Michael et al (2010), além de terpenoides, flavonoides e derivados fenólicos foram identificados em cascas de A. columnaris, Saranya et al (2015).

Distintas espécies de araucária são reconhecidas pela produção terpenóides, e outros compostos químicos Frezza et al (2020), Abd-ElGawad et al (2023).

Os compostos fenólicos e flavonóides isolados da espécie nativa P. crenata foram mais representativos a partir do extrato 70%, decocção, etanol 90%, seguido por extração a frio.

Tabela 2. Teores de compostos fenólicos e flavonoides totais dos diferentes diferentes extratos a partir de cascas lisas de <i>P. crenata</i>						
	Etanol 96 %	Etanol 70 %	Decocção	A frio		
Compostos fenólicos1 (mg·100 mL·1)	142,97	189,20	180,33	66,42		
Flavonoides ² (mg·100 mL ⁻¹)	165,60	78,81	69,37	9,62		
1 – Expresso como equivalente de ácido gálico. 2 – Expresso como equivalente de quercetina.						

Uma das características mais importantes da família Simaroubaceae é a ampla gama de moléculas com propriedades químicas e farmacêuticas, como: alcaloides, quassinoides, tritepenos, flavonoides, esteroides, cumarinas e entre outros compostos e outros compostos (BARBOSA et al., 2011). Entretanto, mesmo com compostos únicos, muitas plantas da família ainda não foram amplamente estudadas ou permanecem inexploradas (ALVES et al., 2014), o que abre uma lacuna de conhecimento para ser explorada.

CONCLUSÃO

Foi possível verificar que os extratos alcoólicos de *A. angustifolia*, seguida por *P. crenata* apresentaram maior quantidade de fenólicos totais. Os extratos alcoólicos a 70% de *A. angustifolia* e extração a frio de *P. crenata* foram mais efetivos sobre o controle do crescimento *miceliano* dos fungos *C. aloeosporioides*, *B. cinerea*, seguido por *Sclerotinia*.

REFERÊNCIAS

ALMEIDA, M.M.B., ARRIAGA, A.M.C., SANTOS, A.K.L., LEMOS, T.L.G., BRAZ-FILHO,R.,

VIEIRA, I.J.C. Ocorrência e atividade biológica de guassinoides da última década, Química Nova, v. 30, p. 935-951, 2007.

ALVES, I.A.B.S, MIRANDA, M.H., SOARES, L.A.L, RANDAU, K.P. Simaroubaceae Family: botany, chemical composition and biological activies; Brazilian Jornal of Pharmacognosy, v. 24, n.4, p. 481-501 2014.