Avaliação da biodegradação do PET (politereftalato de etileno) por ação das enzimas lipase e protease alcalina sobre incidência constante de 40 kHz de ultrassom

Autores: Vitor Silva Peres e Henrique Wakimoto Orientadoras: Fernanda Cavaliere Ribeiro Sodré

Contato: a330712@alunos.colband.com.br a330523@alunos.colband.com.br

INTRODUÇÃO E JUSTIFICATIVA

- Em relatório de 2023, o Programa das Nações Unidas para o Meio Ambiente (PNUMA) considerou a questão de poluição e resíduos como um dos três pilares de uma crise planetária contemporânea (PNUMA, 2023);
- 40% dos resíduos sólidos urbanos (RSU) no Brasil em 2022 tiveram destinação final imprópria segundo a pesquisa "Panorama de Resíduos Sólidos no Brasil 2023" da Associação Brasileira de Resíduos e Meio Ambiente (ABREMA, 2023);
- Presença marcante do plástico na modernidade cuja produção chegou a 390,7 milhões de toneladas mundialmente somente em 2021 de acordo com a Associação Brasileira da Indústria do Plástico (ABIPLAST, 2022);
- 277 mil toneladas de PET, aproximadamente, acabaram não recicladas em 2021 conforme dados da Associação Brasileira da Indústria do PET (ABIPET, 2022);
- Destinação inadequada do PET leva a **poluição** de solos, rios, oceanos e ar, **doenças** em decorrência do promovido excesso de lixo e dano à biodiversidade tendo em vista os ferimentos e óbitos de animais. Ainda, os efeitos negativos ocorrem ao longo de um grande período dada a degradação de centenas de anos do poliéster no meio ambiente (OGBUEWU, 2012; CONRADO & SILVA, 2017);
- Tratamento promissor pela biodegradação enzimática (hidrólise com catalisadores orgânicos) do PET a ser melhorado pelo uso de tecnologias como o ultrassom.

Ultrassom: cavitação

Mudanças de pressão geram pequenas bolhas ou vazios em um líquido que podem colapsar rapidamente, liberando microjatos e ondas de choque.

Figura 1: Cavitação

Enzimas

Reduzem a energia de ativação da reação, além de outras vantagens.

Dentre seus tipos, a **lipase** e a **protease alcalina** foram selecionadas para o projeto por disponibilidade comercial e eficácia na biodegradação do PET.

	Tabela 1: pH ótimos da lipase e protease alcalina							
	Enzima	pH ótimo	Desvio padrão					
Protease Alcalina 8,125 0,21	Lipase	8,15	1,49					
	Protease Alcalina	8,125	0,217					

Fonte: Autoral, 2024

OBJETIVOS

Analisar o efeito do ultrassom na ação das enzimas (lipase e protease alcalina) na biodegradação do PET a fim de aumentar a eficiência desse processo.

METODOLOGIA

Configuração e montagem do sistema de Arduino

Construção de 2 sistemas constituídos de 1 Arduino, 3 sonares de Arduino 40 kHz, 3 suportes de sonar e 16 jumpers cada.

Esterilização das amostras plásticas

Exposição por 5 minutos de 60 pedaços 2x4 cm de garrafas PET à luz UV.

Estudo do pH enzimático

Tendência do pH enzimático em meio aquoso

 $= pH de 5 - 6 \neq 8.125 - 8.15 (pH \text{ \text{o}timo})$

Proporção solução tampão (ml) : água (ml) : enzima (cápsulas) para manutenção do pH

- = 1 cápsula 300 mg de lipase : 16 ml de tampão : 80 ml de água
- = 1 cápsula 300 mg de protease alcalina : 8 ml de tampão : 80 ml de água

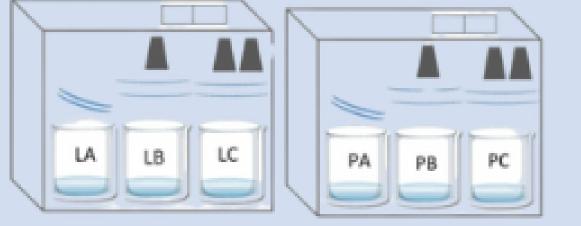


Figura 2: Esterilização

Fonte: Autoral, 2024

Figura 3: Sistema para avaliação do efeito da solução tampão

Exposição de ultrassom e coleta de dados


Figura 4: Esquema da etapa de exposição ao ultrassom

Fonte: Autoral, 2024

Indícios de biodegradação:

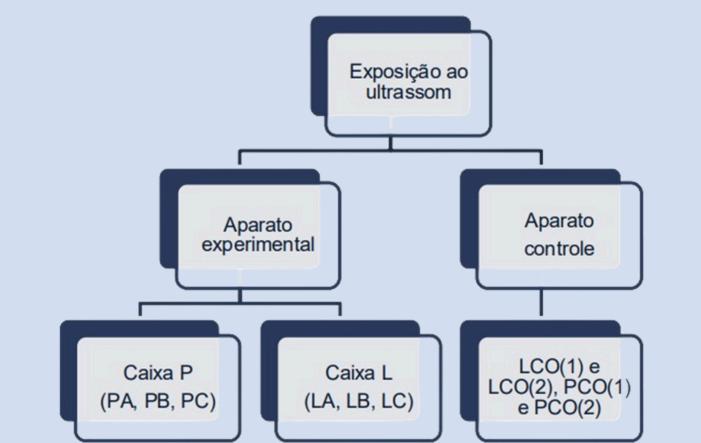
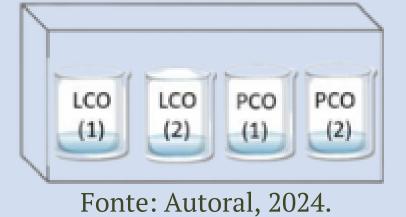

- · Temperatura (termômetro);
- · pH (pHmetro);
- · Coloração (fotos);
- · Fragmentação do plástico (massa).

Figura 5: Aparato experimental de exposição ao ultrassom


Fonte: Autoral, 2024.

- A: 3 cápsulas enzimáticas + 3 pedaços de PET + 0 sonar;
- B: 3 cápsulas enzimáticas + 3 pedaços de PET + 1 sonar;
- C: 3 cápsulas enzimáticas + 3 pedaços de PET + 2 sonares.

Fonte: Autoral, 2024.

Figura 6: Aparato controle de exposição ao ultrassom

CO(1): 1 cápsula enzimática + 1 pedaço de PET

+ 0 sonar;

CO(2): 1 cápsula enzimática + 1 pedaço de PET + 1 sonar.

RESULTADOS E DISCUSSÃO

Tabela 2: pH ao longo do experimento do aparato experimental

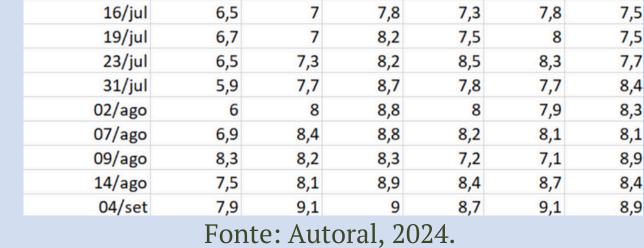
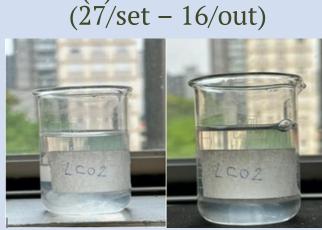


Tabela 3: pH ao longo do experimento do aparato controle

		0	1	1	
Dia		PCO(1)	PCO(2)	LCO(1)	LCO(2)
02	/ out.	5,9	6	5,8	4,7
04	4 /out.	5,9	5,7	5,9	4,6
09	9 /out.	5,5	5,5	5	4,3
11	/ out.	5,3	5,4	4,8	4,2
16	/ out.	4,6	4,1	5,7	6
		Fon	ite: Autoral, 2024	4.	

Aparato Controle: redução geral do pH.

Aparato **Experimental**: aumento do pH.


Aprofundando na comparação entre os grupos experimentais e controles a fim de determinar o papel desempenhado pelo ultrassom na biodegradação enzimática do PET, é importante atentar à diferença de tempo corrido entre eles. Entretanto, para o potencial hidrogeniônico, pode-se considerar o mesmo período de dados pertencentes aos quadros 13 e 14 de 2 semanas para ambos os casos.

Massa

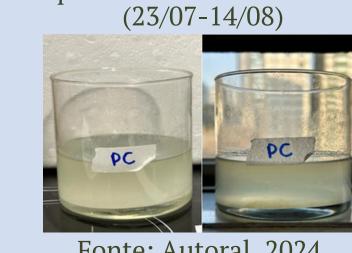

Registrou-se uma distinção visual mínima entre os béqueres no início e final da análise e a faixa de temperatura permaneceu entre 21°C – 24°C, de modo à biodegradação não poder ser comprovada por esses dois parâmetros para ambos os sistemas.

Figura 7: Grupo LCO(2) no início e final do experimento

Fonte: Autoral, 2024.

Figura 8: Grupo PC no início e final do experimento (23/07-14/08)

Fonte: Autoral, 2024.

Tabela 4: Massa das amostras plásticas contidas em meio aquoso do sistema controle Massa média inicial (g) Massa final (g) Grupos LCO(1) LCO(2) PCO(1)

PCO(2) 0,3875 Fonte: Autoral, 2024.

Tabela 5: Massa das amostras plásticas contidas em meio aquoso Tabela 6: Massa das amostras plásticas contidas em meio aquoso de lipase do sistema experimental de protease alcalina do sistema experimental

de ripuse de discerna emperantenear			do procedo	
ıpos	Massa média inicial (g)	Massa final (g)	Grupos	Massa média inicial (g)
\	0,3875	0,33	PA	0,3875
.B	0,3875	0,64	РВ	0,3875
;	0,3875	0,64	PC	0,3875
	Fonte: Autoral, 2024	.		Fonte: Autoral, 202

Aparato Controle: aumento e redução da massa parciais.

Aparato Experimental: aumento geral da massa.

Na comparação dos sistemas, torna-se difícil fazer uma análise precisa dados os intervalos de tempo distintos para as medidas dos dois aparatos. Ainda, numa análise individual de cada sistema, embora a massa tenha aumentado, é importante atentar ao uso de água não destilada com impurezas que aderem à superfície plástica (DE SOUZA, 2019). Portanto, não é possível concluir quanto à ocorrência de biodegradação nos meios pelo parâmetro analisado levando em conta um incremento de massa vinda de impurezas a uma taxa não conhecida.

CONCLUSÃO

Em suma, segundo as medidas de pH, foi constatada biodegradação nos aparatos experimental e controle, sendo o processo também atestado pela variação mássica no segundo. Comparando-se os grupos, verificouse tendência oposta do potencial hidrogeniônico para os ambientes com e sem ultrassom. Ademais, apresentou-se aumento geral e redução pacial da massa em relação à média inicial das amostras plásticas para os aparatos experimental e controle, respectivamente. Embora a princípio o resultado mássico demonstre biodegradação mais intensa para os grupos sobre os quais o ultrassom não incidiu, o uso de água não destilada e os intervalos de tempo distintos para os experimentos dos sistemas controle e experimental limitam a discussão a uma conclusão pouco rigorosa. Assim, o presente projeto traz atenção para a análise de novas tecnologias no tratamento da grande quantidade de lixo gerada na contemporaneidade.

REFERÊNCIAS

ABIPET - Associação Brasileira da Indústria do PET. Décimo segundo censo de reciclagem no Brasil, 2022. Disponível em: https://abipet.org.br/wp-content/uploads/2022/12/Infografico_12_Censo_da_Reciclagem_no_Brasil-Novembro_2022.pdf. Acesso em 25/07/24.

ABIPLAST - Associação Brasileira da Indústria do Plástico. Perfil 2022 Abiplast. Disponível em: https://www.abiplast.org.br/wp- content/uploads/2023/09/perfil_2022_pt.pdf>. Acesso em 25/07/24.

ABREMA - Associação Brasileira de Resíduos e Meio Ambiente, 2023. Disponível em: https://www.abrema.org.br/panorama/. Acesso em 20/03/24. DE SOUZA, W. M.; COELHO, L. R. DEGRADAÇÃO DE SACOLAS PLÁSTICAS CONVENCIONAIS E OXI-BIODEGRADÁVEIS SUBMETIDAS

AOS PROCESSOS DE HIDRÓLISE ÁCIDA E BÁSICA. Revista Brasileira de Engenharia de Biossistemas, v. 13, n. 3, p. 271-281, 2019. Disponível em> https://seer.tupa.unesp.br/index.php/BIOENG/article/view/802/424. Acesso em 22/07/224. PNUMA - Programa das Nações Unidas para o Meio Ambiente. Relatório Anual 2023. Disponível em: https://www.unep.org/pt-

br/resources/relatorio-anual-2023>. Acesso em 05/08/24. CONRADO, L. M. N.; SILVA, V. H. Educação ambiental e interdisciplinaridade: um diálogo conceitual. Revista Gestão & Sustentabilidade

Ambiental, v. 6, n. 3, p. 651-665, 2017. OGBUEWU, I. P.; V.U. Odoemenam; A.A. Omede; C.S. Durunna; O.O. Emenalom, M.C. Uchegbu; I.C. Okoli; M.U. Iloeje. Livestock waste and its impact on the environment. Scientific Journal of review, v. 1, n. 2, p. 17-32, 2012. Disponível em:

https://www.researchgate.net/profile/Apeh-

Omede/publication/249649951_Livestock_waste_and_its_impact_on_the_environment/links/00b4951e64ebf6a092000000/Livestock-wasteand-its-impact-on-the-environment.pdf>. Acesso em 25/07/24.