

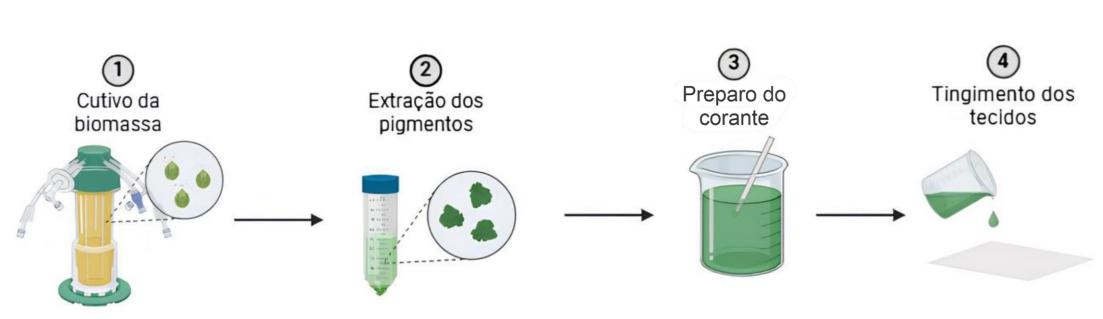
BIOTINGIMENTO TÊXTIL: corante sintetizado a partir de pigmentos microalgais e cianobacterianos

Beatriz Larsen Gallicchio¹, Dr^a Gislaine Ap. Barana Delbianco¹, Dr^a Inessa Lacativa Bagatini² ¹ETEC Trajano Carmargo/Limeira-SP, ²Universidade Federal de São Carlos/São Carlos-SP Palavras-Chave: Biotingimento têxtil, Chlorella vulgaris, Spirulina maxima.

INTRODUÇÃO

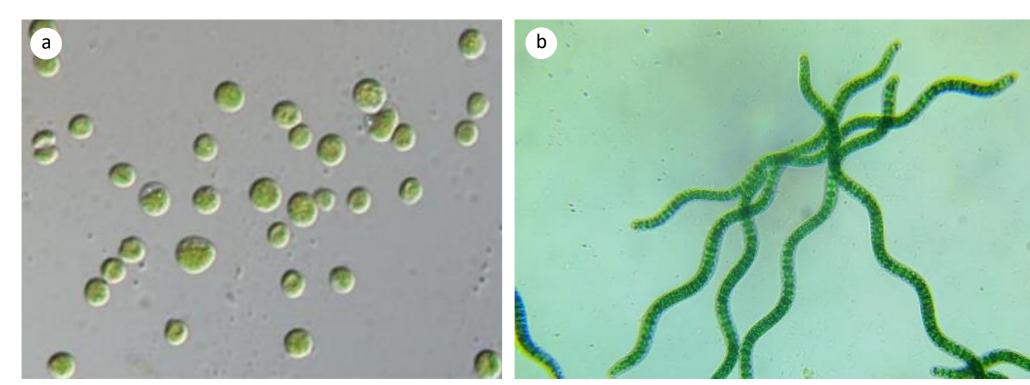
A indústria têxtil está entre as mais lucrativas do mundo, e Brasil destaca-se como um dos maiores produtores e exportadores têxteis do mundo, com mais de 22 mil empresas e uma movimentação de mais de R\$ 161 bilhões na economia em 2020 (TEXBRASIL, 2023; ABIT, 2023).

Contudo, as práticas de tingimento de tecidos tornou esse setor um dos mais contaminadores de água no mundo. Estima-se que mais de 70 mil toneladas de efluentes são liberadas anualmente, prejudicando a penetração de luz nas camadas aquáticas, levando ao esgotamento de oxigênio e à eutrofização do sistema (KUMAR GUPTA, 2020).


Além dos impactos ambientais, muitos desses pigmentos são considerados cancerígenos, conforme listados pela Agência Internacional de Pesquisa sobre o Câncer (AIRC) em 2010. Nesse contexto, a biomassa microalgal surge como uma alternativa promissora, com potencial para reduzir os danos ambientais e promover a sustentabilidade (VOLLEBACK, 2021; SOUZA, 2023).

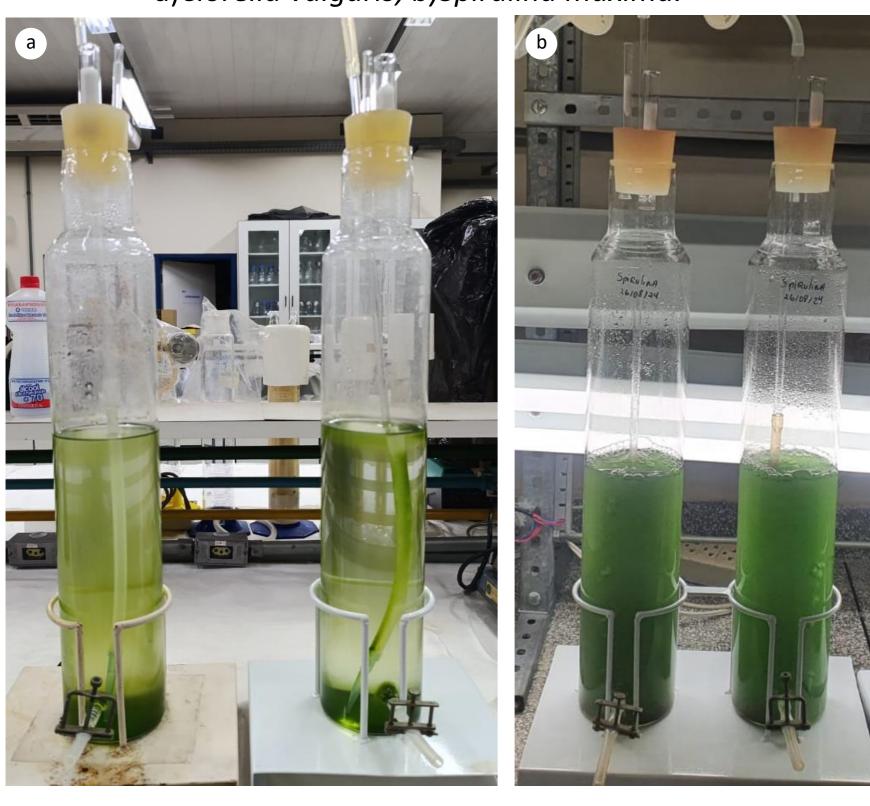
MATERIAIS E MÉTODOS

A aplicação do trabalho contou com a parceria no laboratório de Ficologia da Universidade Federal de São Carlos (UFSCar), realizado de acordo com a Figura 1.


Figura 1: Metodologia de processo.

Fontes: Acervo pessoal (2024).

Para a extração dos pigmentos verde (clorofila) e azul (ficobilinas) foram utilizadas respectivamente a microalga verde *Chlorella* vulgaris e a cianobactéria Spirulina maxima (Figura 2). As utilizadas foram fornecidas pela Coleção de Culturas de microalgas de água doce da UFSCar (CCMA-UFSCar).


Figura 2: Microalgas utilizadas para extração dos pigmentos a)Chlorella vulgaris; b)Spirulina maxima.

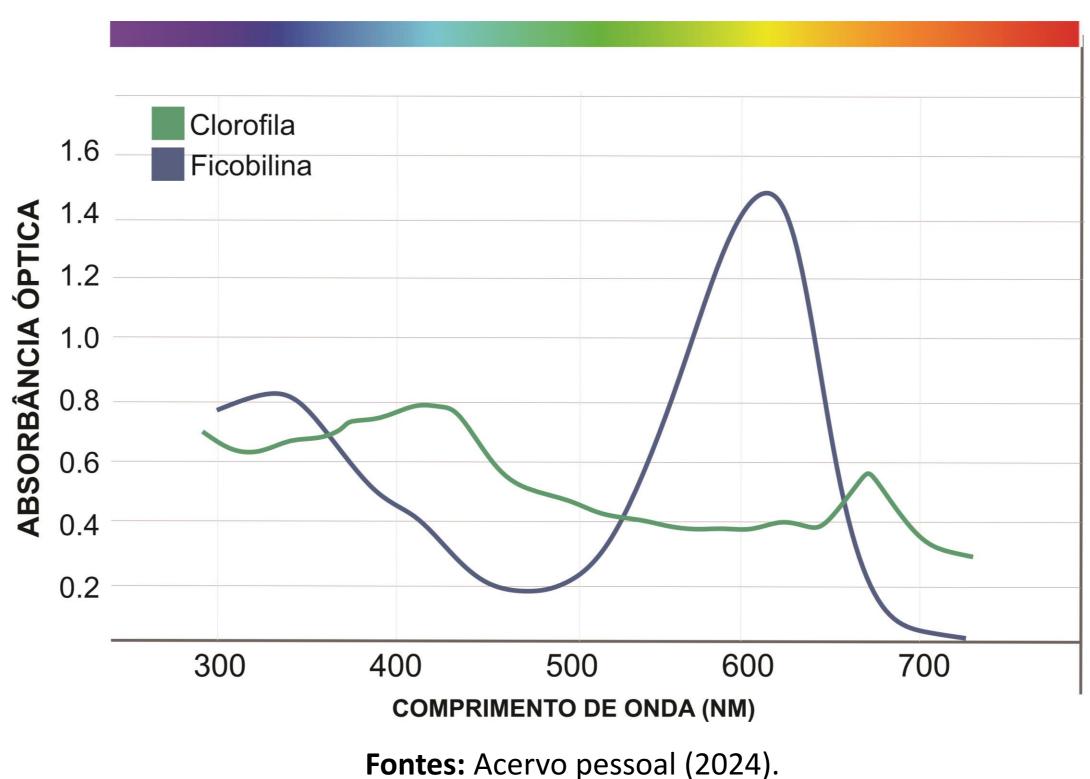
Fontes: HELD & RAYMOND (2011); Algae Lab (2014).

A biomassa foi cultivada em cilindros de 2 L de meio durante 29 dias (Figura 3), coletada através de centrifugação e liofilizada até que completamente seca. Após o processo, os pigmentos foram extraídos a partir de ruptura celular (Fugura 4).

Figura 3: Cultivo nos cilindros a)Clorella vulgaris; b)Spirulina maxima.

Fontes: Acervo pessoal (2024).

Figuras 4: Secagem da biomassa e extração dos pigmentos a)centrifugação; b)liofilização; c)extração dos pigmentos.



Fontes: Acervo pessoal (2024).

ANÁLISE DE RESULTADOS

Caracterização e quantificação dos pigmentos através da absorbância de luz visível por espectrofotometria.

Figura 5: Curva de absorbância.

Após a quantificação, formulamos quatro corantes para cada pigmento (Ficocianina e Clorofila), variando na concentração mordentes e fixadores.

Tabela 1: Formulação dos corantes. Os números de 1 a 4 representam os tipos de formulação e as letras F e C, ficobilina e clorofila, respectivamente.

Matérias-primas	1F	2F	3F	4F	1C	2C	3C	4C
Extrato de pigmentos	05 mL	05 mL	05 mL	10 mL	05 mL	05 mL	05 mL	10 mL
Ficocianinas totais	1,58x10 ⁻⁵ mg/mL	1,58x10 ⁻⁵ mg/mL	1,58x10 ⁻⁵ mg/mL	3,15x10 ⁻⁵ mg/mL	xxx	xxx	xxx	xxx
Clorofilas totais	xxx	xxx	xxx	xxx	3,92x10 ⁻⁶ mg/mL	3,92x10 ⁻⁶ mg/mL	3,92x10 ⁻⁶ mg/mL	7,77x10 ⁻⁶ mg/mL
Alvejante Cloro	xxx	0,0357 mg/mL	0,0357 mg/mL	0,0357 mg/mL	xxx	0,0357 mg/mL	0,0357 mg/mL	0,0357 mg/mL
Alúmen de Potássio	XXX	15 mg/mL						
Água	q.s.p.700mL							

Fontes: Acervo pessoal (2024).

Os 8 corantes formulados foram utilizados para o tingimento de tecidos de linho, algodão, poliéster e elastano (7%). Os melhores resultados foram obtidos com ficobilinas foi o elastano e com clorofila, o algodão (Figura 6)

Figura 6: Resultado dos tingimentos de 1 a 4, respectivamente a)elastano (7%)tingido com ficobilina; b)algodão tingido com clorofila.

Fontes: Acervo pessoal (2024).

Entre as formulações de corantes, a formulação 4 (tanto 4F quanto 4C) foi a que apresentou melhores resultados, com maior absorção pelos tecidos. No entanto, a ficobilina se comporta como um tingimento mais uniforme, principalmente nos tecidos sintéticos.

CONSIDERAÇÕES FINAIS

Analisando tingimentos, os OS melhores resultados são com a ficobilina em tecidos sintéticos, como elastano, que além de uma coloração atrativa, demonstraram aderência maior homogeneidade após os testes de Dessa forma, o corante fixação. desenvolvido se torna um alvo em potencial para a inovação industrial. Além disso, a proposta ainda vêm de encontro com a ascensão dos produtos microalgais no mercado tecnológico, ou seja, além de diminuir a toxidade dos efluentes alavanca o gerados, desenvolvimento industrial a partir da economia circular e a sustentabilidade na indústria têxtil.

relacionadas pesquisas Futuras podem se basear no presente trabalho para biorremediação dos corpos d'agua, como forma de cultivo das microalgas. Ademais, também pode ser estudada a separação de substâncias de interesse, como pigmentos e proteínas, e, por fim, o tingimento têxtil com mordentes menos nocivos à saúde e ambiente.

BIBLIOGRAFIA

ASSOCIAÇÃO BRASILEIRA DA INDÚSTRIA TÊXTIL E DE CONFECÇÃO.

Perfil do Setor, 2023. Disponível em: https://www.abit.org.br/cont/perfildo-setor. Acesso em: 10 mar. 2024.

KUMAR GUPTA, V. Fundamentals of natural dyes and its application on textile substrates. IntechOpen, 2020.

RICHMOND, A. Handbook of Microalgal **Culture**: Biotechnology and Applied Phycology. Blackwell Science Ltd a Blackwell Publishing company, 2004.

SOUZA, Marília Cristina de Oliveira; BARBOSA, Fernando; DOMINGO, José Luis. Compostos em corantes têxteis são carcinogênicos e não têm regulamentação no Brasil. Jornal da USP, 27 jul. 2023. Disponível em: https://jornal.usp.br. Acesso em: 11 mar. 2024.

AGRADECIMENTOS

Beatriz Larsen Gallicchio (19) 99551-0202

≥ larsengallicchiobeatriz@gmail.com