

ECOISLAND – ILHA FLUTUANTE DE SERRAGEM E FIBRA DE COCO, PARA **PURIFICAÇÃO DE ÁGUA**

EREM Professora Adélia Leal Ferreira

Maycon dos Santos Moraes; Luana Beatriz Mendonça dos Santos; Perolla Lino dos Santos; Jennifer Mathias da Silva

INTRODUÇÃO

A crescente crise hídrica global e a poluição dos recursos hídricos têm setornado desafios urgentes para a sustentabilidade ambiental.

O despejo inadequado de resíduos e o acúmulo de poluentes nos corpos d'água comprometem a biodiversidade e a qualidade da água potável, exigindo soluções inovadoras e sustentáveis.

O projeto ECOISLAND surge como uma alternativa ecológica para a purificação da água por meio de ilhas flutuantes compostas por serragem e fibra de coco.

Esses materiais, biodegradáveis e de baixo custo, atuam como um sistema natural de biofiltração, promovendo a retenção de poluentes e a melhoria da qualidade da água.

Além de sua função de purificação, as ilhas flutuantes auxiliam na restauração de ecossistemas aquáticos, proporcionando habitat para espécies aquáticas

OBJETIVOS

Desenvolver uma solução sustentável para a purificação da água, utilizando ilhas flutuantes compostas por serragem e fibra de coco como sistema natural de biofiltração.

Construir e implementar ilhas flutuantes biodegradáveis como alternativa sustentável para a purificação da água;

Reduzir os níveis de poluentes, como excesso de nutrientes e resíduos orgânicos, melhorando a qualidade da água;

Estimular o retorno da biodiversidade aquática;

Demonstrar a viabilidade do uso de materiais recicláveis e biodegradáveis na recuperação ambiental;

Proporcionar uma alternativa de baixo custo e fácil replicação para diferentes contextos ambientais.

MATERIAL

Serragem: Subproduto da indústria madeireira, com alta capacidade de retenção de poluentes orgânicos.

Fibra de Coco: Material biodegradável resistente, capaz de reter partículas e auxiliar na estruturação da ilha.

Baronesa (Eichhornia crassipes): Planta aquática utilizada para a absorção de nutrientes e melhoria da qualidade da água.

Garrafas PET: Utilizadas na base para garantir a flutuabilidade da ilha.

Tela de Náilon: Auxilia na fixação dos materiais e plantas, garantindo estabilidade.

MÉTODO

Construção da Ilha Flutuante:

A abordagem da ECOISLAND tem inspiração histórica nas chinampas, sistemas de agricultura flutuante desenvolvidos pelos astecas.

As chinampas utilizavam materiais naturais para criar ilhas artificiais produtivas em lagos, contribuindo para a sustentação alimentar e para a manutenção da qualidade da água.

Assim como as chinampas, o ECOISLAND propõe uma solução baseada em elementos naturais, promovendo a interação entre tecnologia e ecossistema para um futuro mais sustentável.

ORGANIZAÇÃO/REALIZAÇÃO:

✓ Montagem:

As garrafas PET foram fixadas em uma estrutura de tela de náilon para formar a base flutuante;

Camadas de serragem e fibra de coco foram adicionadas sobre a estrutura para compor o sistema de biofiltração;

Mudas de Baronesa foram plantadas na camada superior, permitindo sua fixação e crescimento.

Fig 01: Preparação da Ilha

Fig 02: Ilha Pronta

✓ Implementação

A ilha foi posicionada em um lago no Parque São Francisco, em Caruaru-PE, foram realizados testes de qualidade da água antes e depois da implementação para analisar os efeitos do sistema de purificação.

Fig 03: Implementação da Ilha.

Fig 04: Implementação da Ilha

✓ Monitoramento e Avaliação:

O monitoramento incluiu análises periódicas de pH, turbidez e concentração de nutrientes na água, foram observadas leves alterações na transparência da água, e na biodiversidade aquática ao longo do período de estudo.

RESULTADOS ESPERADOS

Os resultados esperados com o projeto ECOISLAND incluem a melhoria da qualidade da água, como principal objetivo, reduzindo níveis de poluentes, melhorando a transparência e oxigenação da água, beneficiando o ecossistema aquático.

Recuperar a biodiversidade local, incluindo o retorno de espécies aquáticas e plantas nativas impulsionando e fortalecendo o equilíbrio ecológico proporcionando locai de refúgio e alimentação para a fauna, contribuindo para um ecossistema mais estável.

Compreender e demonstrar que a utilização dos materiais ecológicos e biodegradáveis são uma solução eficaz, econômica e ecológica, correta para a limpeza da água, com potencial de replicação em diferentes ambientes.

Conscientizar as pessoas sobre alternativas ambientais, eficientes, demonstrando os benefícios de soluções naturais e sustentáveis, inspirando mais pessoas a adotarem práticas ecológicas de gestão de água e meio ambiente.

CONCLUSÃO

A conclusão do projeto ECOISLAND demonstra o potencial das ilhas flutuantes de serragem e fibra de coco como uma alternativa ecologicamente responsável e eficaz para a purificação da água

Os resultados esperados mostram que essas estruturas não apenas reduzem significativamente a presença de nutrientes e poluentes, mas também promovem a recuperação da biodiversidade e estabilizam ecossistemas aquáticos.

A metodologia aplicada, utilizando materiais biodegradáveis e de baixo custo, valida o conceito de que soluções naturais podem ser uma alternativa viável aos processos convencionais de tratamento, reduzindo custos e impactos ambientais.

Além disso, o projeto ECOISLAND reforça a importância de tecnologias sustentáveis para a gestão de recursos hídricos, especialmente em regiões onde a infraestrutura de saneamento é limitada.

Este projeto serve como modelo para iniciativas futuras, incentivando políticas de preservação ambiental e promovendo a conscientização sobre a importância de soluções verdes.

Conclui-se que as ilhas flutuantes ecológicas representam uma contribuição inovadora e replicável para a preservação dos recursos hídricos, oferecendo uma alternativa prática para enfrentar os desafios da poluição hídrica e da crise ambiental global.

REFERÊNCIAS

- 1. BOAVIDA, Maria José L. Problemas de qualidade da água: eutrofização e poluição. www. ordembiologos/Biologias N, v. 1,
- 2. LO MONACO, Paola A. et al. Influência da granulometria da serragem de madeira como material filtrante no tratamento de águas residuárias. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 8, p. 116-119, 2004.
- 3. PEREIRA, Simone de Fátima Pinheiro et al. Fibra De Coco Como Biossorvente Na Remoção Da Matéria Orgânica De Águas Residuais. The Challenge of Developing Creative Artists in a **Standardized World**, v. 7, p. 396-400, 2014.
- 4. PRILE, Fabio; PARENTE, Antonio Helder. Avaliação da qualidade das águas do rio Ipojuca, Pernambuco-Brasil. Revista Química & Tecnologia (UNICAP), v. 1, p. 71-77, 2003.
- 5. VIEGAS, Eduardo Coral. Gestão de recursos hídricos: uma análise a partir dos princípios ambientais. 2007.

Organização:

